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Near Real-Time Approach to Statistical Flight Test

Brian L. Jones*
U.S. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433

A near real-time approach to statistical flight test is proposed that minimizes the number of test condition
executions required to adequately describe system performance relative to a specified performance goal or
specification. Four different statistical intervals, all based on the Student-/ distribution and its generalization,
are summarized and applied to aircraft flight test scenarios. A graphical technique is developed with applicability
to near real-time mission operations. Finally, probability statements are associated with sample set statistics
and applied to performance goals or specification compliance.

Introduction

P ERFORMANCE flight test of aircraft systems, and some
system components, is inherently statistical. Data from

multiple executions of a given test condition are required to
adequately characterize system performance. Examples of
system performance that fall into this type of flight test are
terrain following at a specified altitude and air-to-air radar
target acquisition; system component evaluation would in-
clude radar altimeter and laser ranging sensor testing. Two
natural questions arise from this type of flight test:

1) What is the minimum number of test condition execu-
tions required to adequately describe system performance?

2) Given a specified number of test condition executions
and the sample set statistics, what is the probability (or con-
fidence) level that the data collected represents the true sys-
tem performance?

This article provides one approach to answering these ques-
tions based on statistical intervals. Furthermore, the approach
given has a near real-time application for flight test mission
control. The mathematical background of statistical intervals
is first presented, followed by the development of a graphical
technique applicable to near real-time operations. Finally, a
simple example is given to demonstrate this technique.

Mathematical Development
A large amount of statistical analysis is based on the normal

(or Gaussian) probability density function. Whereas the char-
acteristics of the normal distribution are desirable for flight
test applications, the assumption of an infinite sample size (or
even very large) cannot be typically satisfied. However, the
Student-r probability density function (and its generalizations)
maintains the advantages of the normal distribution, but re-
lieves the requirement for a very large sample size by adding
degrees-of-freedom v to the probability density function, where
degrees of freedom (DOFs) are defined as one less than the
sample set size n. The sample mean x and standard deviation
5A. are defined in the usual way:

_ 1 ̂

(2)
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Theoretically, with an infinite sample size, the Student-^ dis-
tribution and the normal distribution are equal. With 30 DOFs,
the maximum difference between the one-dimensional normal
distribution and the Student-^ distribution is 1.13% of the
maximum value of the normal distribution; hence, the Stu-
dent-r distribution with v = 30 will be considered equivalent
to the normal distribution.

Consider a flight-test condition that has an associated upper
U and/or lower L performance goal or specification. If the
system performance is to meet either one or both of these
goals, then the chosen criterion / must satisfy one of the
following statements:

/ < U

(3)

(4)

(5)

Which statement to be satisfied is a function of which of the
performance goals are applicable to the flight test condition.
Equation (3) applies if both upper and lower performance
goals are relevant; Eqs. (4) and (5) are appropriate if only
one of the upper or lower performance goals are applicable.
The notation

L<J and/or J<U (6)

will be used hereafter to indicate any set of equations of the
form like Eqs. (3-5).

Selection of the appropriate criterion is highly dependent
on the flight test considered. Hahn1-2 summarizes six statistical
intervals for a normal population that lend themselves to many
applications, including aircraft flight test. Four of these in-
tervals are taken as criterion in this article:

1) Prediction interval to contain the mean of a future sample
set with r samples (yr). The interpretation of this interval is
that in a large number of repeated experiments where this
interval is computed, the claim that the interval contains the
true yr would be correct 100(1 - a)% of the time.

2) Confidence interval to contain the population mean (fji).
The interpretation of this interval is that in a large number
of repeated experiments where this interval is computed, the
claim that the interval contains the true ju, would be correct
100(1 - a)% of the time.

3) Tolerance interval to contain a proportion of the pop-
ulation (Zp). The interpretation of this interval is that in a
large number of repeated experiments where this interval is
computed, the claim that the true proportion of the population
contained in the interval would be at least p would be correct
100(1 - a)% of the time.
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Fig. 1 Comparison of statistical intervals.

4) Prediction interval to contain all r samples of a future
sample set (Yr). The interpretation of this interval is that in
a large number of repeated experiments where this interval
is computed, the claim that the interval contains all of the r
samples would be correct 100(1 - ot)% of the time.

Of these four intervals, two of them (criterion 1 and 4)
address predicting the results of a future set of samples from
the same population, and two of them (criterion 2 and 3)
address describing the population from which the samples
have been collected. Figure 1 is a schematic of these four
intervals. Also included on the figure is a one-sided perfor-
mance goal (shaded area), which illustrates that samples from
three of the four intervals can occur outside the interval and
potentially violate the performance goal. Recall that the in-
terval is only statistically correct 100(1 - a)% of the time.

In the development of each of these intervals, it is assumed
that each sample (*,; / = 1, 2, . . . , « ) is chosen randomly
from a normally distributed population. Furthermore, for the
prediction intervals, the future samples (yh i = 1, 2, . . . , r)
are assumed to be chosen randomly from the same normally
distributed population and independent of the first sample
set.

A prediction interval to contain the mean of a future sample
set containing r samples is the appropriate interval to consider
for system component flight testing. For example, component
evaluation of a radar altimeter or a laser-ranging sensor would
involve analysis of large data sets since these components
operate at high data rates. With large data sets, it is reasonable
to apply performance goals to the numerical average of the
sample set; i.e., at the component level, a few outlying sam-
ples will not have a significant effect on total system perfor-
mance. This interval was first considered by Baker,3 who
showed that the probability function of the deviation of yr
with respect to x was proportional to known quantities from
the first sample set (x and sx) and the Student-f distribution.
Mathematically, this prediction interval can be expressed as

Pr{x - *(*/, y)[(l/r) + (l/n)]»2sx<yr and/or

yr<x + t(y, y)[(l/r) + (lln)]l/2sx} = 1 - a (7)

where the notation t(v, y) indicates the lOOy percentile of the
Student-/ distribution with v DOFs. Values for the Student-f
distribution, t(v, y), may be found in many sources (e.g., see
Fisher and Yates4).

The confidence interval to contain the population mean is
just a special case (r = °°) of the prediction interval to contain
the mean of a future sample set. Hence, it has the same

applicability to component flight test as did the previous in-
terval and mathematically, Eq. (7) reduces to

Pr{x - t(v, y)(ll\rn)sx < /x and/or

^ < x + t(v, y)(\lVn)sx} = 1 - a (8)

A tolerance interval to contain a proportion of the popu-
lation is the appropriate interval to consider for total system
flight test, rather than system component flight test. For ex-
ample, air-to-air radar target detection or weapons system
accuracy are typical flight test applications. These types of
evaluations seek to quantify system performance, but can
allow a few outlying samples without "safety-of-flight" im-
plications. Hahn2 concluded this interval could be expressed
in terms of the noncentral t distribution. Its probability state-
ment is

Pr{x - g(zrVn, v, y)(llVn)sx < Zp and/or

= I - a (9)

where zp\rn is the noncentrality parameter, and zp is the
percentile value for a normal distribution. Values for the non-
central t distribution, g(zpVfl, v, y), may be found in many
sources (e.g., see Owen5). In Eq. (9), Zp represents the
expression

< Z,, and/or Zp < 4- Kpa} > p (10)

where Kp determines the magnitude of the tails of the normal
distribution. Although not considered in this article, Owen6-7

presents a method for controlling the percentages of each tail
independently.

Hahn1 calls a prediction interval to contain all r samples of
a future sample set an "astronaut's interval." A typical as-
tronaut, assigned to fly on a future spaceflight, is generally
not concerned with what has happened on past flights or even
what might happen on the average of future flights; he is more
interested in the worst that might happen on his particular
flight. This prediction interval is applicable to total system
evaluations that necessitate "safety-of-flight" predictions.
Additional flight test examples would be a flight control sys-
tem demonstration or an evaluation of automatic terrain fol-
lowing system performance. Hahn8-9 considered this interval
in detail and showed that it can be expressed in terms of the
multivariate Student-/1 probability density function with cor-
relation matrix 2. Mathematically, this yields the probability
statement

Pr{x - u(r, v, 2, y)[l + (l/n)]l/2sx< Yr and/or

(Vn)]l/2sx} = l - a (11)

In Eq. (11), Yr represents the expression (Y, and Y2 and . . .
and Yr). Values for the multivariate Student-/ distribution,
u(r, v, 2, y), may be found in many sources (e.g., see Krish-
naiah and Armitage10).

Notice that all of the mathematical representations for these
intervals, Eqs. (7-9) and (11), can be written in the form

Pr{x - ksx < / and/or / < x + ksx} = 1 - a (12)

where J and k are summarized in Table 1. Also included in
Table 1 are the references used in this article where these k-
f actors have already been tabulated.

To express these statistical intervals in terms of the per-
formance goals, consider Fig. 2 where both upper and lower
performance goals are shown. Combining Eqs. (6) and (12)
yields a relationship between the statistical interval and the
performance goals

L + ksx < x and/or x < U - ksx (13)
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Table 1 Summary of ^-factors

/

A*

Yr

k

t(v, y)[(l/r) + (l//i)] 1/2
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x+ksY

o x
Fig. 2 Comparison of statistical inter-
vals with respect to the performance goals.
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Fig. 3 Performance wedge construction.

Notice that the criterion J enters this statement through the
appropriate value of k. Further, Eq. (13) carries the associated
probability statement given by Eq. (12). Figure 3 demon-
strates Eq. (13) for the four types of statistical intervals and
the three combinations of performance goals; in this example,
upper and lower performance goals of 220 and 180 ft, re-
spectively, were assumed with a 95% probability level se-
lected. The units in this example were feet, but any units can
be associated with x and sx as long as they are consistent. The
sample set contained five samples and the future sample set
being considered had five samples.

For flight test conditions where both upper and lower per-
formance goals apply, the result is a wedge where if the in-
tersection of the sample mean and standard deviation falls
inside (nonshaded area), both goals will be met. For flight
test conditions where only an upper (lower) performance goal
apply, the sample mean and standard deviation must fall be-
low (above) the line for the goal to be met. Also shown on
Fig. 3 is trend information as the number of samples and the
probability level increase. For conditions where upper and
lower goals apply, additional samples have the effect of
"stretching" the wedge by moving the tip point to the right;
increased probability "shrinks" the wedge by moving the tip
to the left. For single performance goals, additional samples
increase the goal-satisfied region while increased probability
decreases the goal-satisfied region.

Figure 3 also provides a comparison between the four sta-
tistical intervals. The least-conservative interval will always

be the confidence interval to contain the population mean
followed by the prediction interval to contain the mean of a
future sample set with r samples. The prediction interval to
contain all r samples of a future sample set and the tolerance
interval to contain a proportion of the population will be more
conservative than the other two intervals, although not nec-
essarily in that order. The order of these last two intervals is
dependent on the number of future samples r and the pro-
portion of the population p selected. In Fig. 3, for the selected
values of r and /?, the prediction interval is more conservative
than the tolerance interval, but this is not necessarily true in
general. Nevertheless, the more conservative criteria does
correlate to the more restrictive regions of the performance
goals being satisfied. Hahn1 gives additional comparison in-
formation between the different statistical intervals.

Consider further the case when both upper and lower per-
formance goals apply. The wedge that results is a function of
confidence level and DOFs, but will always have its vertices
at

(0, £7), (0, L), {[(U - L)/2*], [(U + L)/2]} (14)

Additionally, it will always be symmetric about

x = (U + L)/2 (15)

If, as in many specifications, the performance goals can be
written as a percentage of some nominal value

U=(l + (w/100)]*non

L = [1 + (//100)K<)m

(16)

(17)

where both u and / can be above (>0) or below (<0) the
nominal value, then, Eq. (13) can be written as

+ kes_ ^ ex and/or ex. < u — kes (18)

where ex, is the percent error in the sample mean referenced
to *nom, and £ V v is the percent standard deviation normalized
with respect to jcnom. Equation (18) is preferred because it is
a relative equation; hence, the absolute numerical value of
the performance goals and sample set statistics do not have
to be considered. The end result of a wedge containing the
region where the performance goals are satisfied does not
change. Finally, the vertices of the wedge, Eq. (14), become

(0, M), (0, /), {[(u - 0/2*], [(u + /)/2]} (19)

Flight Test Technique
The near real-time approach presented in this article is a

simplified version of sequential life testing, which is defined
as hypothesis testing in which the course of action is reassessed
as observations become available. Sequential life testing has
been predominantly applied in the reliability and manufac-
turing fields, but has application in many disciplines such as
aircraft flight test. Many current texts (e.g., see Kapur and
Lamberson12) cover the theory of sequential life testing. Se-
quential life testing is "simplified" in this scenario because of
the small number of samples typically collected during per-
formance flight tests.

During near real-time operations, the question at hand is
"When can repeated test condition executions be terminated
because, in a statistical sense, no additional information rel-
ative to satisfying a given performance goal is being ob-
tained?" A graphical technique is proposed to address this
question. To illustrate this technique, consider the case where
both upper and lower performance goals apply to the specified
flight test condition. For a given probability level and crite-
rion, performance wedges can be constructed, as previously
discussed, ranging from the minimum number of test condi-
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tion executions planned to the maximum number of test con-
dition executions allowed by the test program; typically, this
range will be between 3 and 10 samples. As test conditions
are executed, the sample set statistics can be plotted against
these performance wedges. The sample set statistics will lie
in one of three regions:

1) The first region is inside the performance wedge cor-
responding to the actual number of samples collected. If inside
this region, testing should be terminated because to the prob-
ability level and criterion specified, the sample set has met
the performance goals. Additional samples would be bene-
ficial, but not necessary in addressing the question of did the
system performance meet specification.

2) The second region is outside of the performance wedge
corresponding to the actual number of samples collected, but
inside the performance wedge associated with the maximum
number of test condition executions allowed by the test pro-
gram. In this situation, test condition execution should con-
tinue because the performance goals have not been met to
the specified probability level for the given criterion. Addi-
tional samples are required to be able to address system per-
formance relative to a given specification.

3) The last region is outside of the performance wedge
corresponding to the maximum number of test condition exe-
cutions allowed by the test program. In this case, test con-
dition execution should be terminated because to the specified
probability level, the performance goals will not be met, even
if additional samples are collected. Hence, one should then
answer the second question posed in this article and quantify
to what probability level the performance goals were satisfied,
albeit lower than the desired probability level.

One inherent assumption is made with this technique, namely,
that the sample set statistics remain constant between test
condition executions. This assumption is not necessarily good
for extremely small sample sizes. For the two cases presented
in the next section (n = 4), this assumption will be quantified.

To address the second question posed in this article and
alluded to above, consider constructing performance wedges,
but rather than specifying probability level and criterion, se-
lect number of samples and criterion to be held constant. In
this way, probability level can be varied on the graph and
overlaying the sample set statistics will yield the probability
level to which the performance goals have been satisfied.

Application
A simple example will demonstrate the usefulness of this

technique. Consider a flight test condition with both upper
and lower performance goals specified as ± 10% error. Figure
4 shows performance wedges for each of the criterion con-
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Fig. 4 Application performance wedges (Pr = 0.99).

Fig. 5 Application performance wedges (n = 4).

sidered in this article with a probability level of 0.99 assumed.
Two wedges are shown on each figure corresponding to n =
4 and n = 30; a sample set size of 30 was considered equivalent
to a normal distribution. Typically, 30 samples is a much larger
sample set than one can expect to collect in performance flight
test. The statistics from two different test conditions of actual
flight test data are indicated on Fig. 4 by the symbols o and
x . Each symbol represents the sample set statistics after four
executions of the respective test condition. In addition, to
address the assumption that the sample set statistics remain
constant between test condition executions, the variability of
the sample set statistics is indicated by the boxed area sur-
rounding the two symbols (solid for o; dashed for x). That
is, the statistics of the sample set would remain inside of the
respective variability box, regardless of the order in which the
samples were executed.

For the prediction interval to contain the mean of a future
sample set with r samples (r = 20) and the confidence interval
to contain the population mean, applying the proposed tech-
nique dictates terminating test condition execution for the
sample set indicated by a o, because the performance goals
have been satisfied; continuing data collection for the sample
set indicated by a x is also indicated. The variability of the
sample set statistics, although somewhat large, does not affect
these conclusions. Applying the technique to the other two
intervals shows continued testing for the o sample set and test
termination for the x sample set. Test termination resulted
because with even up to 26 additional samples, the perfor-
mance goals would not be met. Again, the variability of the
sample set statistics does not affect the decision to continue
or terminate testing.

In this last case, the second question posed by this article
comes into consideration. Figure 5 shows performance wedges
for a constant sample set size (n = 4) and varying probability
level. Also shown are the sample set statistics and their re-
spective variability boxes from the two test conditions. For
the prediction interval to contain the mean of a future sample
set with r samples (r — 20) and the confidence interval to
contain the population mean, the x sample set essentially
satisfies a probability level of 0.95. For the other two intervals,
a lower probability level would have to be determined for the
given performance goals. Nevertheless, in this manner and
for this number of samples, a probability level statement can
be associated with each sample set statistics.

Conclusions
A near real-time approach to statistical flight test has been

proposed that minimizes the number of test condition exe-
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cutions required to adequately describe system performance
relative to a specified performance goal or specification. This
approach took advantage of statistical intervals based on the
Student-/ probability distribution and its generalizations. In
this manner, probability statements could be associated with
the sample set statistics when considering performance goals
or specification compliance. Four different statistical criterion
were considered, each having an unique applicability to air-
craft flight test.
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